
CSC 420 Project2 - Autonomous Driving
Introduction
In recent years, with the rapid development of artificial intelligence technology, the traditional
automobile has combined with information technology, and research on automatic driving
technology has made a lot of progress. In the existing automatic driving based on traditional
features, target recognition is the core task. One, which includes road and road edge recognition,
lane line detection, vehicle recognition, vehicle type recognition, non-motor vehicle recognition,
pedestrian recognition, traffic sign recognition, obstacle recognition and avoidance, etc. The
target recognition system uses computer vision to observe the traffic environment and
automatically identify targets from real-time video signals, providing a basis for real-time
autonomous driving operations such as starting, stopping, turning, accelerating and decelerating.
In this project, we mainly did tasks related to vehicle recognition and road recognition.

Task 1 Disparity Map
In task1 and task2, we compute the disparity map and depth map from the left view and right
view. For disparity map we used the block matching algorithm to find the pixel correspondence
in the left and right views, and then use the abscissa difference of the corresponding pixels to get
disparity map. We used the API cv2.StereoBM_create() help us to implement this.

Task 2 Depth Map

af://n411
af://n414
af://n417
af://n420

From disparity map, we can easily get depth map by formulate: depth = (baseline * focal_length) /
disparity

Task 3 Road Classifier
In this task, we user the architecture from [1] Road Segmentation Using CNN and Distributed
LSTM. This model has very good performance on KITTI road segmentation challenge:

For the feature selection, we used the 2D feature, ground truth pixel of road as the training
feature. Train this model is quiet challenging cause it will take a long time by using CPU. To solve
this problem, we install CUDA and pytorch for GPU version to train this model. The following
images is the ground trueth segmentation of road, and the output of the model .

af://n423

Task 4 Road Plane
In this task, we used depth map and ground truth mask from previous Subtask. Firstly we get 3D
location based on depth map. We used the formula 𝑋 = Z−(x∗Px) 𝑓 , 𝑌 = Z−(y∗Py) 𝑓 , where Z is the
depth in the depth map, x and y is the image coordinate, then get the 3D location. Then for all the
3D location, we used ground truth mask to filter out points that are not road.

The last step is to fit a plane. Here we used a technique called Least Square to find the best fit
plane. The algorithm can find a plane that minimize the least square distance to every point. In
order for our algorithm to be robust to outliers, we applied RANSAC over Least Square.

af://n430

Task 5 3D Point Cloud Road Plane
In this task, we used open3d python package help use to convert the road plane and image to 3D
point cloud.

af://n434

The green point is the 3D point cloud of road that we calculate. We can see that it in the bottom of
the image and fit the road plane well.

Task 6 Detect Cars
In this task, we used [2]Fast-RCNN:
torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) help us to
detect cars. We used the pretrained model, the performance if good:

Task 7 Train a Classifi er Predicts Viewpoint

af://n438
af://n441

For this task, we use the same network architecture in task 3, with some modification, to do
viewpoint classification. task. For the training labels, we used one-hot encoder to represents that.
Totally, there are 12 viewpoints, so the output should be 1*12 matrix. The last layer, we used
softmax, to make each element of the output represent the probability of the prediction for each
view. The criterion function we choose binary cross entropy.

For the data process, we user the car pixels as the training data. We filter the car image that is too
small to train.

Task 8 Predicts Viewpoint
Here is the performance. The black car is away from us so the direction is 180, the white car is
towards us but a little offset.

Task 9 3D Bounding Box of Car
In this task, I used car detector in task 6 to get the left bottom pixels of the car, then I use the
depth map in task 2 to get the 3D location of the cars. I used hard code to define the size of the
car, and to see the location clearly, I make the size larger. The red lines are the BBOX of cars, I
used the same image in task 8.

af://n444
af://n449

Reference

[1]Yecheng Lyu, Lin Bai and Xinming Huang. Road Segmentation Using CNN and Distributed LSTM htt
ps://arxiv.org/pdf/1808.04450.pdf

[2] Ross Girshick. Fast R-CNN https://arxiv.org/pdf/1504.08083.pdf

af://n452
https://arxiv.org/pdf/1808.04450.pdf
https://arxiv.org/pdf/1504.08083.pdf

	CSC 420 Project2 - Autonomous Driving
	Introduction
	Task 1 Disparity Map
	Task 2 Depth Map
	Task 3 Road Classifier
	Task 4 Road Plane
	Task 5 3D Point Cloud Road Plane
	Task 6 Detect Cars
	Task 7 Train a Classifi�er Predicts Viewpoint
	Task 8 Predicts Viewpoint
	Task 9 3D Bounding Box of Car
	Reference

